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a b s t r a c t

Particle swarm optimization is a novel evolutionary stochastic global optimization method that has
gained popularity in the chemical engineering community. This optimization strategy has been success-
fully used for several applications including thermodynamic calculations. To the best of our knowledge,
the performance of PSO in phase stability and equilibrium calculations for both multicomponent reactive
and non-reactive mixtures has not yet been reported. This study introduces the application of particle
swarm optimization and several of its variants for solving phase stability and equilibrium problems in
multicomponent systems with or without chemical equilibrium. The reliability and efficiency of a num-
ber of particle swarm optimization algorithms are tested and compared using multicomponent systems
with vapor–liquid and liquid–liquid equilibrium. Our results indicate that the classical particle swarm
optimization with constant cognitive and social parameters is a reliable method and offers the best per-
formance for global minimization of the tangent plane distance function and the Gibbs energy function
in both reactive and non-reactive systems.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Phase equilibrium calculations play a major role in the design,
development, operation, optimization and control of chemical pro-
cesses. These calculations involve both phase stability analysis and
split computations with or without the presence of chemical reac-
tions. For a given mixture with specified composition, temperature
and pressure, the phase stability analysis is used to check if the
tested phase is stable or not. If it is not stable then the phase split
calculations can be performed, and the stability status of the new
phases (obtained from split calculation) is again tested. The model-
ing of phase behavior of multicomponent reactive and non-reactive
systems is a complex topic due to non-linear interactions among
components, phases and reactions. Therefore, the development of
reliable methods for solving phase equilibrium problems has long
been a challenge and remains so [1].

Phase equilibrium calculations can be formulated as a global
optimization problem where the tangent plane distance function
(TPDF) is used as optimization criterion for stability analysis
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and the Gibbs energy function (G) is minimized for phase split
computations [1–4]. Specifically, global optimization problems
for phase and stability calculations in reactive and non-reactive
systems follow the form: minimize f(u) subject to u ∈ ˝ where u is a
continuous variable vector with domain ˝ ∈ �n, and f(u): � ⇒ � is
a real-valued function. The domain ˝ is defined within upper and
lower limits of each decision variable, which are generally mole
numbers or mole fractions for phase equilibrium calculations. The
minimization of G and TPDF (i.e., f(u)) can be performed using both
equation-solving methods and direct optimization strategies [5–7].
If chemical reactions occur in the mixture, these strategies can
also be classified as either stoichiometric or non-stoichiometric,
depending on the formulation of material balance constraints [8].
Equation-solving methods are based on the solution of non-linear
equations obtained from the stationary conditions of the optimiza-
tion criterion. Local search methods with and without decoupling
strategies are frequently used to solve these equations in conjunc-
tion with mass balance restrictions. However, these methods are
prone to severe computational difficulties and may fail to converge
when initial estimates are not suitable, especially for strongly non-
ideal multicomponent and multireactive systems [5–7]. It is worth
noting that the mathematical properties of the objective functions
used for phase equilibrium calculations depend completely on the
structure of the thermodynamic equation chosen to model each
of the phases that may exist at equilibrium. Thus, TPDF and G are
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generally non-convex, highly non-linear with many decision vari-
ables, and often have unfavorable attributes such as discontinuity
and non-differentiability (e.g. when cubic equations of state or
asymmetric models are used for modeling thermodynamic prop-
erties). As a consequence, they may have several local minimums
including trivial and nonphysical solutions. In these conditions,
conventional numerical methods are not suitable for solving phase
equilibrium problems in both reactive and non-reactive systems.

Minimization strategies are preferred by researchers in process
modeling to study mixtures with complex phase behavior. Most
of the available methods for minimization of TPDF and G have
been proposed during recent decades, and they comprise local and
global optimization approaches [5–7]. Reviews of several studies
using minimization strategies for phase equilibrium calculations
can be found in Teh and Rangaiah [5] and Wakeman and Stat-
eva [7] for non-reactive systems, and in Seider and Widagdo [6]
for reactive mixtures. In general, these reviews indicate that there
has been a significant and increasing interest in the development
of deterministic and stochastic global strategies for reliably solv-
ing phase equilibrium problems. Studies on deterministic phase
equilibrium calculations have been focused on the application
of homotopy continuation methods [9–13], branch and bound
global optimization [14–16] and interval analysis using an interval-
Newton/generalized bisection algorithm [17–19]. Although these
methods have proven to be very promising, several of them are
model dependent, may require problem reformulations or signifi-
cant computational time for multicomponent systems [7,20].

Alternatively, stochastic optimization techniques have often
been found to be as reliable and effective as deterministic methods
but may offer more advantages for phase equilibrium calculations
[21]. These methods are robust numerical tools that present a
reasonable computational effort in the optimization of multivari-
able functions (generally less time than deterministic approaches);
they are applicable to ill-structure or unknown structure problems,
require only calculations of the objective function and can be used
with all thermodynamic models. Many thermodynamic problems
that are very difficult to solve by conventional techniques can be
solved by stochastic methods. To date, several stochastic global
optimization methods have been studied and tested for phase
equilibrium calculation in non-reactive and reactive mixtures.
These methods include: the random search method of Lee et al.
[22], simulated annealing [23–26], genetic algorithms [24,27], tabu
search [28–30], tunneling method [1,20,31], clustering method
with stochastic sampling [21], and differential evolution [29,30,32].
On the other hand, few attempts have been made in the application
of stochastic methods for reactive phase equilibrium calculations,
compared to those reported for non-reactive systems [22,25,26,30].
The presence of chemical equilibrium constraints increases the
complexity and dimensionality of phase equilibrium problems and,
as expected, these calculations are more challenging.

One of the most-promising stochastic methods is particle swarm
optimization (PSO) [33–43]. This is a novel evolutionary algo-
rithm capable of handling the difficult characteristics of global
optimization problems with several decision variables. PSO is sim-
pler, both in formulation and computer implementation, than other
population-based metaheuristics. This optimization method has
a flexible and well-balanced mechanism to enhance global and
local exploration abilities. PSO has become a popular optimiza-
tion strategy for the chemical engineering community and has been
successfully applied in non-linear parameter estimation [36], pro-
cess design [37,38], and thermodynamic calculations [39–43]. In
the literature, there are few studies concerning the application of
PSO for phase equilibrium calculations in binary and ternary non-
reactive systems [40–42]. Specifically, Cheng et al. [40] reported a
linear constraint PSO algorithm for the minimization of TPDF. In
another study, Cheng and Chen [41] applied a hybrid PSO for Gibbs

energy minimization in ternary systems. Recently, Rahman et al.
[42] introduced the application of repulsive particle swarm opti-
mization, another variant of PSO, for solving both phase equilibrium
and stability problems in binary and ternary non-reactive mixtures.
Unfortunately, the potential of PSO has not been demonstrated
by applying it to multicomponent systems, taking into account
the fact that problems with higher dimensions are expected to be
more difficult to solve than those with lower dimensions, because
multicomponent systems can exhibit a variety of possible phase
equilibriums. Moreover, the capabilities of PSO and its variants have
not yet been studied in the modeling of phase behavior for reac-
tive systems even though preliminary results indicate that PSO may
offer competitive performance for these calculations [43].

In this study, the feasibility of applying PSO-based algorithms
to phase stability and equilibrium calculations in multicomponent
reactive and non-reactive systems is studied. Specifically, we test
and compare the performance of PSO and several of its variants
using phase stability and equilibrium problems with dimension
ranging from 2 to 10. This algorithm comparison is necessary to
identify the relative strengths of PSO and to justify the choice of
a specific algorithm. To the best of our knowledge, this compara-
tive study has not been thoroughly done before. Our results show
that the classical particle swarm optimization is a suitable alter-
native numerical tool for modeling phase behavior of reactive and
non-reactive systems.

2. Particle swarm optimization and its variants

Particle swarm optimization is a novel and promising
population-based method that belongs to the class of swarm intel-
ligence algorithms. Kennedy and Eberhart [33] introduced this
strategy for global optimization, inspired by the social behavior of
flocking swarms of birds and fish schools. It exploits a population
of potential solutions to identify promising areas for optimiza-
tion. In this context, the population of potential solutions is called
the swarm and each solution is called a particle. Particles are con-
ceptual entities, which fly through the multi-dimensional search
space. The success histories of the particles influence both their
own search patterns and those of their peers. Each particle has
two state variables: its current position si,j(k) and its current veloc-
ity Vi,j(k) where k is an iteration counter. In the local version of
PSO, which is used in this study, the search is focused on promis-
ing regions by biasing each particle’s velocity towards both the
particle’s own remembered best position (sp

i,j
) and the communi-

cated best ever neighborhood location (sbest
i,j

). The relative weights
of these two positions are scaled by the cognitive (c1) and social (c2)
parameters. The cognitive parameter has a contribution towards
the self-exploration (or experience) of a particle, while the social
parameter has a contribution towards motion of the particles in
the global direction taking into account the swarm motion in the
preceding iteration. So, the position and velocity of the swarm are
updated using:

si,j(k + 1) = si,j(k) + Vi,j(k+1) for i = 1, . . . , nvar, j = 1, . . . , np

(1)

Vi,j(k + 1) = c1R1(sp
i,j

− si,j(k)) + c2R2(sbest
i,j − si,j(k))

for i = 1, . . . , nvar, j = 1, . . . , np (2)

where R1, R2 ∈ (0, 1) are random numbers, nvar is the number of
decision variables and np is the swarm size (i.e. overall number
of particles). Usually, the velocity of each particle is restricted
to a maximum value within the interval [−Vmax, Vmax], which is
defined considering the bounds on decision variables. The lim-
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Fig. 1. Flowchart of particle swarm optimization.

itation of maximum velocity of each particle is used to reduce
excessively large step sizes in the position rule. In PSO, each parti-
cle is assigned to a neighborhood of a pre-specified size. Thus, the
best position ever attained by nh particles that comprise the neigh-
borhood is communicated among them. We have used a random
Ring topology for neighborhood communication. After calculating
the velocities and position for the next iteration k + 1, the current
iteration is completed. The best particle is only updated when a
new one is found yielding a decrease in the objective function
value. These steps are performed until satisfaction of the speci-
fied stopping criterion. In this study, this standard version of PSO
is referred to as PSO-C. Fig. 1 provides the corresponding flowchart
for PSO.

In the literature, many modifications have been proposed
to improve the convergence performance of the original PSO
[34,35,44,45]. These modifications are generally based on introduc-
ing new algorithm parameters (e.g. constriction factor or inertia
weight) to modify the velocity rule. Other studies have examined
the hybridization of PSO with both local and global search strategies
[35]. Below, typical PSO variants are described.

In the original version of PSO, Kennedy and Eberhart [33] sug-
gested that the cognitive and social scaling parameters are fixed
constant and equal to c1 = c2 = 2.0 in order to allow a mean of
1 when multiplied by the random numbers. However, previous
numerical experience indicates that it is advantageous to adjust the
cognitive/social ratio to favor cognitive learning. In particular, the
dynamic values of these parameters may improve the global search
over the entire search space during the early iterations and encour-
age the particles to converge to global optimum at the end of the
optimization sequence [34]. Therefore, we have considered a PSO

with dynamic c1 and c2 (referred to as PSO-D) where c1 decreases
linearly from c1,0 to 0.5 using:

c1 = (0.5 − c1,0)
(

k

Itermax

)
+ c1,0 (3)

where c1,0 is the initial value for cognitive parameter, k is the iter-
ation counter and Itermax is the maximum number of iterations
allowed for PSO. Note that c2 = l − c1 where l is defined by the user
and is usually ≥4 [34].

Recently, Shi and Eberhart [44] proposed a significant variation
on the original PSO by introducing the inertia term w into the orig-
inal velocity rule. The inertia weight factor is used to control the
impact of the previous velocities on the current velocity. It also
influences the trade-off between the global and local exploration
abilities of the particles. The velocity is updated using w as follows:

Vi,j(k + 1) = wVi,j(k) + c1R1(sp
i,j

− si,j(k)) + c2R2(sbest
i,j − si,j(k))

for i = 1, . . . , nvar, j = 1, . . . , np (4)

The literature indicates that high values for inertia term result
in straight particle trajectories with significant overshooting at
the target, while lower values result in erratic particle trajecto-
ries with a reduction of overshoot, both desirable properties for
a refined localized search [34]. Typically, an intermediate value of
w is selected. This version of PSO is referred to as PSO-I.

Alternatively, a linear inertia reduction is a suitable modification
to improve the performance of PSO because, at the initial stage of
the search process, large inertia weight is recommended to enhance
global exploration; meanwhile, at its last stage, this parameter can
be reduced for better local exploration. This algorithm modifica-
tion attempts to eliminate several of the drawbacks of constant
inertia and entails linear scaling of the inertia parameter during
the search. Usually, this linear reduction performs between 0.8 and
0.4 in a specified number of function evaluations or iterations. This
promotes the gradual shift of PSO from an algorithm suitable for
global search to an algorithm suitable for refining an optimum in
a local search [34,35]. In this version of PSO (PSO-DI), w decreases
linearly from w0 to 0.4 over the entire run by using:

w = (0.4 − w0)
(

k

Itermax

)
+ w0 (5)

In PSO-DI, the swarm velocity is updated using Eqs. (4) and (5).
In a recent study, Clerc and Kennedy [45] introduced constric-

tion factor (�) into the velocity rule. This parameter also has the
effect of reducing particle velocity as the search progresses, thereby
contracting the overall swarm diameter and resulting in a pro-
gressively smaller search area. Constriction factor is obtained from
c1 and c2 as follows:

� = 2

| 2 − l −
√

l2 − 4l |
(6)

where l = c1 + c2 and l > 4. Then, the swarm velocity is updated using:

Vi,j(k + 1) = �(Vi,j(k) + c1R1(sp
i,j

− si,j(k)) + c2R2(sbest
i,j − si,j(k)))

for i = 1, . . . , nvar, j = 1, . . . , np (7)

Results have shown that incorporation of constriction factor into
PSO can search different regions efficiently by avoiding premature
convergence, and generates higher quality solutions [45]. This PSO
variation is referred to as PSO-CF. The characteristics of PSO variants
used in this study are given in Table 1 and we have implemented
the methods in FORTRAN subroutines.

Finally, the choice of stopping criterion can significantly influ-
ence the reliability and efficiency of stochastic optimization
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Table 1
Characteristics of PSO variants used for phase stability and equilibrium calculations
in reactive and non-reactive systems.

Acronym Remarks

PSO-C Particle swarm optimization with constant c1 and c2. Swarm
position and velocity are given by Eqs. (1) and (2).

PSO-D Particle swarm optimization with dynamic c1 and c2 (Eq. (3)).
Swarm position and velocity are given by Eqs. (1) and (2).

PSO-I Particle swarm optimization with constant inertia weight w and
constant c1 and c2. Swarm position and velocity are given by Eqs.
(1) and (4).

PSO-DI Particle swarm optimization with dynamic inertia weight w (Eq.
(5)) and constant c1 and c2. Swarm position and velocity are given
by Eqs. (1) and (4).

PSO-CF Particle swarm optimization with constant c1 and c2 and
constriction factor. Swarm position and velocity are given by Eqs.
(1), (6) and (7).

methods including PSO [1]. In the literature, mainly two stopping
criteria are applied for global optimization using stochastic meth-
ods [1,28,29,32]: (a) a maximum number of iterations (Itermax) and
(b) a maximum number of successive iterations (Scmax) without
improvement in the best function value. Thus, these criteria are
used in this study for the assessment of PSO-based algorithms.

3. Formulation of phase stability and equilibrium problems
in non-reactive and reactive mixtures

3.1. Phase stability

Stability analysis is a fundamental stage in phase equilibrium
calculations and allows identification of the thermodynamic state
that corresponds to the global minimum of Gibbs free energy. A
mixture at a fixed temperature T, pressure P and overall composi-
tion is stable if and only if the Gibbs free energy surface is at no
point below the tangent plane to the surface at the given mixture
composition [3,4]. This statement is a necessary and sufficient con-
dition for global stability. Stability analysis can be performed using
the tangent plane distance function (TPDF). Specifically, phase sta-
bility of a non-reactive mixture with c components and a global
composition z (z1, . . ., zc) in mole fraction units, at constant P and T,
is analyzed by the global minimization of TPDF [3,4]:

TPDF =
c∑

i=1

yi(�i|y − �i|z) (8)

where �i|y and �i|z are the chemical potentials of component i
calculated at compositions y and z, respectively. TPDF is the distance
between the Gibbs free energy surface at y and the tangent plane
constructed to this surface at z [4]. To perform a stability analysis,
TPDF must be globally minimized with respect to composition of a
trial phase y. If the global minimum of TPDF < 0, the mixture under
analysis is considered unstable; otherwise it is a globally stable
system.

For reactive systems, the stability criterion can be employed in
exactly the same way as in phase equilibrium calculations under
non-reactive conditions, but for mixtures that are both physically
and chemically equilibrated [4,8,13,19]. However, Wasylkiewicz
and Ung [12] have proposed an extension of TPDF in terms of
the reaction-invariant composition variables of Ung and Doherty
[46,47]. This alternative stability criterion retains all characteristics
and advantages of the classical TPDF equation, including a signifi-
cant reduction in problem dimensionality, and it appears to be more
suitable for the modeling of multireactive mixtures [12].

In particular, Ung and Doherty [46,47] proposed the reaction-
invariant composition variables for modeling the phase behavior of
reactive systems. These variables depend only on the initial com-

position of each independent chemical species. They also restrict
the solution space to the compositions that satisfy stoichiometry
requirements and reduce the dimension of the composition space
by the number of independent reactions. These features allow all of
the procedures used to obtain thermodynamic properties of non-
reactive mixtures to be extended to systems subject to chemical
equilibrium, and, consequently, non-reactive phase equilibrium
algorithms can be easily modified to account for chemical reac-
tions [46,47]. In this study, this thermodynamic framework has
been used in the formulation of phase stability and equilibrium
problems for systems subject to chemical equilibrium.

For a system of c components that undergoes r independent
chemical reactions, the transformed mole fractions Xi are defined
selecting r reference components:

Xi = xi − viN
−1xref

1 − vTOT N−1xref
for i = 1, . . . , c − r (9)

where xi is the mole fraction of component i, xref is a column vector
of mole fractions for r reference components, vi is the row vec-
tor of stoichiometric coefficients of component i for each of the r
reactions, N is an invertible and square matrix formed from the
stoichiometric coefficients of the reference components in the r
reactions, and vTOT is a row vector where each element corresponds
to the sum of stoichiometric coefficients for all components that
participate in each of the r reactions, respectively. The transformed
mole fractions in reactive systems are similar to the mole frac-
tions in non-reactive mixtures and the sum of all transformed mole
fractions must equal unity, or

∑c−r
i=1Xi = 1, but a transformed mole

fraction can be negative or positive depending on the reference
components, number and type of reactions. Note that X are related
to x using the reaction equilibrium constants Keq,k:

Keq,k =
c∏

i=1

avik
i k = 1, . . . , r (10)

where vik is the stoichiometric coefficient of component i in reac-
tion k, and ai is the activity of component i, respectively. To evaluate
thermodynamic properties in reactive systems using this approach,
the mole fractions xi are obtained from the transformation proce-
dure X → x using Eqs. (9) and (10). These mole fractions (x) satisfy
the stoichiometry requirements and are chemically equilibrated.
In this study, the bisection method is used for variable transforma-
tion X → x in single reactive systems, while the Newton method is
applied for multireactive systems. As indicated by Ung and Doherty
[47], it is not possible to find multiple solutions for xref during
variable transformation X → x because only one solution set of x
simultaneously satisfies the chemical equilibrium equations and
corresponds to the specified values of the transformed composition
variables.

Then, the reactive tangent plane distance function (RTPDF) for
a c multicomponent and r multireactive system with transformed
global composition Z (Z1, . . ., Zc−r) is defined as:

RTPDF =
c−r∑
i=1

Yi(�i|Y − �i|Z ) (11)

where �i|Y and �i|Z are the chemical potentials of component i
calculated at the transformed mole compositions Y and Z, respec-
tively. RTPDF represents the displacement from the tangent plane
at a composition Z to the transformed molar Gibbs free energy sur-
face at composition Y [12]. The necessary and sufficient condition
for global phase stability is given by RTPDF ≥ 0 for any transformed
composition Y from the whole transformed composition space.
Thus, RTPDF must be globally optimized with respect to the trans-
formed composition of a trial phase Y for solving the phase stability
problem in reacting mixtures.
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The global minimization of TPDF and RTPDF is difficult
and requires robust numerical methods since these functions
are multivariable, non-convex and highly non-linear. For the
case of TPDF, several deterministic [9–11,13–19] and stochas-
tic [21,23–25,27,29,31,32,40,42] optimization methods have been
reported. On the other hand, few studies have dealt with the global
solution of RTPDF using a homotopy continuation method [12],
simulated annealing [26], differential evolution and tabu search
[30]. Note that PSO and its variant have not been applied to solve
the phase stability problem of multicomponent reactive and non-
reactive mixtures.

The decision variables in phase stability problems are c − 1 mole
fractions yi for non-reactive systems and c − r − 1 transformed mole
fractions Yi for reactive systems, taking into account that yc =
1 −
∑c−1

i=1 yi and Yc−r = 1 −
∑c−r−1

i=1 Yi. Following previous studies
[24,29,32], the constrained global optimization of TPDF or RTDPF
can be transformed into an unconstrained problem by using new
decision variables ˇi instead of yi and Yi. The decision variables
ˇi ∈ (0, 1) are related to composition variables y and Y by:

niy = ˇizinF i = 1, . . . , c (12)

n̂iY = ˇiZin̂F i = 1, . . . , c − r (13)

where

yi = niy∑c
j=1njy

i = 1, . . . , c (14)

Yi = n̂iY∑c−r
j=1 n̂jY

i = 1, . . . , c − r (15)

where nF =
∑c

i=1niF and n̂F =
∑c−r

i=1 n̂iF are the total amount of con-
ventional and transformed moles in the feed composition used
for stability analysis, and niy and n̂iY are the conventional and
transformed mole number of component i in trial phase y and Y,
respectively. Note that the transformed mole numbers n̂i are given
as:

n̂i = ni − viN
−1nref i = 1, . . . , c − r (16)

where ni is the number of moles of component i and nref is a column
vector of dimension r of the moles of each of the reference compo-
nents, respectively. The mole fractions zi and Zi are obtained from
zi = niF/nF and Zi = n̂iF /n̂F . Eqs. (12)–(15) have been used for all sta-
bility calculations performed in this study. Finally, the calculation of
TPDF and RTPDF is straightforward with almost any thermodynamic
model because:

�i − �0
i

RgT
= ln

(
xiϕ̂i

ϕi

)
= ln(xi�i) (17)

where Rg is the universal gas constant, �0
i

is the chemical potential
of pure component i, ϕ̂i is the fugacity coefficient of component i in
the mixture, ϕi is the fugacity coefficient of pure component, � i is
the activity coefficient of component i in the mixture, and xi is the
mole fraction of component i in the mixture.

3.2. Phase split calculations

In phase split problems, the main objectives are to correctly
establish the number and types of phases existing at equilibrium
as well as the composition and quantity of each phase such that
the Gibbs free energy of the system is a minimum [7]. At constant
temperature and pressure, a c multicomponent and � multiphase
non-reactive system achieves equilibrium when its molar Gibbs
free energy of mixing (g) is at the global minimum. The correspond-

ing objective function is given by:

g =
�∑

j = 1

c∑
i = 1

nij ln(xij�ij) =
�∑

j = 1

c∑
i = 1

nij ln

(
xijϕ̂ij

ϕi

)
(18)

where nij is the mole number of component i in phase j, � ij is the
activity coefficient of component i in phase j, and ϕ̂ij is the fugacity
coefficient of component i in phase j, respectively. The Gibbs free
energy of mixing (g) is used to avoid the calculation of the pure
component free energies, which do not influence equilibrium and
stability results [46]. For a non-reactive system, g must be mini-
mized with respect to nij taking into account the following mass
balance constraints:

�∑
j = 1

nij = zinF i = 1, . . . , c (19)

0 ≤ nij ≤ zinF i = 1, . . . , c, j = 1, . . . , � (20)

where zi is the mole fraction of component i in the feed. In reac-
tive mixtures, the Gibbs free energy minimization is subject to
chemical equilibrium restrictions [7]. However, this difficult ther-
modynamic problem can be readily solved if the Gibbs energy
function is expressed in terms of transformed composition vari-
ables (X) [46,47]. For these conditions, minimizing the Gibbs free
energy is equivalent to the optimization of transformed Gibbs free
energy. Then, the transformed Gibbs free energy of mixing (ĝ) for
a multiphase reactive system is defined as:

ĝ =
�∑

j = 1

c − r∑
i = 1

n̂ij ln(xij�ij) =
�∑

j = 1

c − r∑
i = 1

n̂ij ln

(
xijϕ̂ij

ϕi

)
(21)

where n̂ij is the transformed mole number of component i in phase
j. Assuming a reactive system where all transformed composition
variables are positive, the material balances are described as fol-
lows:

�∑
j = 1

n̂ij = Zin̂F i = 1, . . . , c − r (22)

0 ≤ n̂ij ≤ Zin̂F i = 1, . . . , c − r, j = 1, . . . , � (23)

where Zi is the transformed mole fraction of component i in the
feed.

For phase equilibrium calculations in non-reactive and reac-
tive systems, g and ĝ are the objective functions which, due to
the non-linear nature of thermodynamic models, are generally
multivariable and non-convex. As indicated, simulated annealing
and genetic algorithms [24], tabu search [28], tunneling method
[20], differential evolution [29,32] and particle swarm optimization
[41,42] have been used for performing Gibbs energy minimiza-
tion in non-reactive systems. To date, PSO has been applied in
binary and ternary systems. In contrast, few stochastic methods
have been tested and applied for phase equilibrium calculations in
reactive systems, especially using reaction-invariant composition
variables [26,30], and preliminary results [43] have suggested that
PSO appears to be a robust strategy for the global minimization of
ĝ. To the best of our knowledge, no one has reported a detailed
evaluation and comparison of PSO and its variants for Gibbs energy
minimization in both multicomponent reactive and non-reactive
systems.

To perform an unconstrained minimization of g and ĝ, we can
again use a set of new variables instead of nij and n̂ij as opti-
mization targets. The introduction of these variables eliminates
the restrictions imposed by material balances, reduces problem
dimensionality, and the optimization problem is transformed to an
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unconstrained one [24,29,30,32]. For multiphase non-reactive sys-
tems, real variables ˇij ∈ (0, 1) are defined and employed as decision
variables by using the following expressions:

ni1 = ˇi1zinF i = 1, . . . , c (24)

nij = ˇij

(
zinF −

�−1∑
m=1

nim

)
i = 1, . . . , c, j = 2, . . . , � − 1 (25)

ni� = zinF −
�−1∑
j=1

nij i = 1, . . . , c (26)

while for systems subject to chemical equilibrium, we have

n̂i1 = ˇi1Zin̂F i = 1, . . . , c − r (27)

n̂ij = ˇij

(
Zin̂F −

�−1∑
m=1

n̂im

)
i = 1, . . . , c − r, j = 2, . . . , � − 1

(28)

n̂i� = Zin̂F −
�−1∑
j=1

n̂ij i = 1, . . . , c − r (29)

Using this formulation, all trial compositions will satisfy the
material balances allowing the easy application of optimization
strategies [24,29,32]. For Gibbs energy minimization, the number
of phases existing at the equilibrium is assumed to be known a pri-
ori and the number of decision variables is c·(� − 1) for non-reactive
and (c − r)·(� − 1) for reactive systems, respectively.

4. Results and discussion

4.1. Description of phase equilibrium problems

We have tested and compared the performance of PSO and
its variants using reactive and non-reactive systems with dimen-
sion ranging from 2 to 10. Several systems are multicomponent
(i.e., c ≥ 3) and their thermodynamic properties are represented

with equation of state, solution model and ideality. Our collec-
tion of test problems includes systems with vapor–liquid and
liquid–liquid equilibrium. A brief description of all examples are
given in Tables 2–4 and detailed global solutions of all phase
equilibrium problems can be found in Refs. [14,16,24–26,30]. The
objective functions (i.e., TPDF, RTPDF, g and ĝ) have at least one local
minimum, which corresponds to a trivial solution, for all tested
conditions. In addition, the selected conditions involve feed com-
positions near phase boundaries, which are generally challenging
for any algorithm. Most of the selected phase equilibrium prob-
lems have been used for testing other deterministic and stochastic
optimization strategies, e.g. [9,12,14–16,21,22,24–26,29–31].

4.2. Parameter tuning of PSO-based methods

The key parameters of PSO and its variants have been tuned by
finding the global minimum of several phase stability and equilib-
rium problems. For this purpose, we have considered systems with
different degrees of difficulty: example nos. 3 and 5 for non-reactive
systems and example nos. 4 and 8 for reactive mixtures. Parameter
tuning was performed by varying one parameter at a time while the
rest are fixed at nominal values, which were established using val-
ues reported in the literature and results of preliminary calculations
(not reported in this paper). The tested and suggested parameter
values for each PSO-based method are presented in Table 5. For
calculations performed in this study, we set np = 10nvar (i.e., swarm
size) and nh = 0.25np (i.e., neighborhood size) in all PSO variants
because our preliminary calculations suggest that these parame-
ter values are a reasonable compromise between numerical effort
and reliability. All numerical experiments were performed on an
Intel Pentium M 1.73 GHz processor with 504 MB of RAM. This
computer performs 254 million floating point operations per sec-
ond (MFlops) for the LINPACK benchmark program (available at
http://www.netlib.org/) for a matrix of order 500.

4.3. Comparison of PSO and its variants in phase stability and
equilibrium calculations

Having performed parameter tuning, we now compare the
performance of PSO-based methods. In order to facilitate under-
standing and to make the performance difference between

Table 2
Examples selected for phase stability and equilibrium calculations in non-reactive systems using particle swarm optimization and its variants.

No. System Feed Thermodynamic models Reference

1 n-Butyl acetate + water z (0.5, 0.5) at 298 K and 101.325 kPa NRTL model. Model parameters reported
by Rangaiah [24].

[14,15,24,29,42]

2 Toluene + water + aniline z (0.29989, 0.20006, 0.50005) at 298 K
and 101.325 kPa

NRTL model. Model parameters reported
by McDonald and Floudas [14].

[14,24,29,42]

3 N2 + C1 + C2 z (0.3, 0.1, 0.6) at 270 K and 7600 kPa SRK EoS with classical mixing rules. Model
parameters reported by Bonilla-Petriciolet
et al. [25].

[16,25,31]

4 C1 + H2S z (0.9813, 0.0187) at 190 K and
4053 kPa

SRK EoS with classical mixing rules. Model
parameters reported by Rangaiah [24].

[4,9,16,21,24,29,31]

5 H2O + CO2 + 2-propanol + ethanol z (0.99758, 0.00003, 0.00013, 0.00226)
at 350 K and 2250 kPa

SRK EoS with classical mixing rules. Model
parameters reported by Harding and
Floudas [16].

[16,25]

6 C2 + C3 + C4 + C5 + C6 z (0.401, 0.293, 0.199, 0.0707, 0.0363)
at 390 K and 5583 kPa

SRK EoS with classical mixing rules. Model
parameters reported by Bonilla-Petriciolet
et al. [25].

[25]

7 C1 + C2 + C3 + C4 + C5 + C6 + C7–16 + C17+ z (0.7212, 0.09205, 0.04455, 0.03123,
0.01273, 0.01361, 0.07215, 0.01248) at
353 K and 38500 kPa

SRK EoS with classical mixing rules. Model
parameters reported by Harding and
Floudas [16].

[16,25]

8 C1 + C2 + C3 + iC4 + C4 + iC5 + C5 + C6 + iC15 z (0.614, 0.10259, 0.04985, 0.008989,
0.02116, 0.00722, 0.01187, 0.01435,
0.16998) at 314 K and 2010.288 kPa

SRK EoS with classical mixing rules. Model
parameters reported by Rangaiah [24].

[22,24,25,29]

9 C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + C10 z (0.6436, 0.0752, 0.0474, 0.0412,
0.0297, 0.0138, 0.0303, 0.0371, 0.0415,
0.0402) at 435.35 K and 19150 kPa

SRK EoS with classical mixing rules. Model
parameters reported by Bonilla-Petriciolet
et al. [25].

[25]
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Table 3
Examples selected for phase stability and equilibrium calculations in reactive systems using particle swarm optimization and its variants.

No. System Feed and transformed variables Thermodynamic models Reference

1 A1 + A2 ↔ A3 Z (0.445, 0.555) at 101.325 kPa and 310 K Ideal solution and ideal gas. [26,47]
2A3 ↔ A4 + A2 X1 = (x1 + x3 + 2x4)/(1 + x3 + 2x4) K1

eq = exp(−22.57 + (7368/T))
X2 = (x2 + x3 + x4)/(1 + x3 + 2x4) = 1 − X1 K2

eq = exp(−7.0265 + (6844.1/T) −
(1, 391, 790/T2))

Reference components: A3, A4 where T is given in K.
Model parameters are taken from
Bonilla-Petriciolet et al. [26].

2 A1 + A2 ↔ A3, and A4 as an inert component. Z (0.3, 0.3, 0.4) at 373.15 K and 1013.25 kPa Wilson model and ideal gas. [26,47]
(1) Isobutene X1 = (x1 + x3)/(1 + x3), X2 = (x2 + x3)/(1 + x3) �G0

rxs/R =
−4205.05 + 10.0982T − 0.2667T ln T

(2) Methanol ln Keq,1 = (−�G0
rxs/RT), where T is in K.

(3) Methyl ter-butyl ether X4 = (x4)/(1 + x3) = 1 − X1 − X2 Model parameters are taken from Ung and
Doherty [47].

(4) n-Butane Reference component: A3

3 A1 + A2 + 2A3 ↔ 2A4 Z (0.354, 0.183, 0.463) at 335 K and
151.9875 kPa

Wilson model and ideal gas. [26]

(1) 2-Methyl-1-butene X1 = (x1 + 0.5x4)/(1 + x4),
X2 = (x2 + 0.5x4)/(1 + x4)

Keq,1 = 1.057 × 10−04 e4273.5/T , where T is in
K.

(2) 2-Methyl-2-butene X3 = (x3 + x4)/(1 + x4) = 1 − X1 − X2 Model parameters are taken from
Bonilla-Petriciolet et al. [26].

(3) Methanol Reference component: A4

(4) Tert-amyl methyl ether

4 A1 + A2 ↔ A3 + A4 Z (0.05, 0.2, 0.75) at 298.15 K and
101.325 kPa

UNIQUAC model. [12,26]

(1) Acetic Acid X1 = x1 + x4, X2 = x2 + x4 ln Keq,1 = (450/T) + 0.8, where T is in K.
(2) n-Butanol X3 = x3 − x4 = 1 − X1 − X2 Model parameters are taken from

Wasylkiewicz and Ung [12].
(3) Water Reference component: A4

(4) n-Butyl acetate

5 A3 ↔ A4 Z (0.6305, 0.00355, 0.36595) at 101.325 kPa
and 333.15 K

Ideal solution and ideal gas. [30,49]

A5 ↔ A4 X1 = x1 Keq,1 = 1.5
A4 ↔ A6 X2 = x2 Keq,2 = 0.15
with A1 and as A2 inert components. X6 = x3 + x4 + x5 + x6 = 1 − X1 − X2 Keq,3 = 0.35

Reference components: A3, A4, A5 Model parameters are taken from
Bonilla-Petriciolet et al. [30].

6 A1 + A2 + 2A3 ↔ 2A4 with A5, A6, A6, A7 and
A8 as inert components

Z (0.16, 0.169, 0.119, 0.02339, 0.213, 0.177,
0.13861) at 310 K and 100 kPa.

SRK EoS with conventional mixing rules
where all interaction parameters kij were
set to zero.

[50]

(1) 2-Methyl-1-butene X1 = (x1 + 0.5x4)/(1 + x4),
X2 = (x2 + 0.5x4)/(1 + x4)

Keq,1 = 1.057 × 10−04 e4273.5/T , where T is in
K.

(2) 2-Methyl-2-butene X3 = (x3 + x4)/(1 + x4), X5 = (x5)/(1 + x4) Model parameters are taken from Luyben
[50].

(3) Methanol X6 = (x6)/(1 + x4), X7 = (x7)/(1 + x4)
(4) Tert-amyl methyl ether X8 = 1 − X1 − X2 − X3 − X5 − X6 − X7

(5) n-Pentane Reference component: A4

(6) Isopentane
(7) 1-Pentene
(8) 2-Pentene

7 A1 + A2 ↔ A3 Z (0.6, 0.4) Margules solution model. [26]
X1 = (x1 + x3)/(1 + x3),
X2 = (x2 + x3)/(1 + x3) = 1 − X1

(gE/RgT) = 3.6x1x2 + 2.4x1x3 + 2.3x2x3

Reference component: A3 Keq = 0.9825
Model parameters are taken from
Bonilla-Petriciolet et al. [26].

8 A1 + A2 + 2A3 ↔ 2A4 with A5 as inert
component

Z (0.1, 0.1, 0.6, 0.2) at 335 K and
151.9875 kPa

Wilson model and ideal gas. [26]

(1) 2-Methyl-1-butene X1 = (x1 + 0.5x4)/(1 + x4),
X2 = (x2 + 0.5x4)/(1 + x4),
X3 = (x3 + x4)/(1 + x4)

Keq,1 = 1.057 × 10−04 e4273.5/T , where T is in
K.

(2) 2-Methyl-2-butene X5 = (x5)/(1 + x4) = 1 − X1 − X2 − X3 Model parameters are taken from
Bonilla-Petriciolet et al. [26].

(3) Methanol Reference component: A4

(4) Tert-amyl methyl ether
(5) n-Pentane

9 A1 + A2 ↔ A3 Z (0.37, 0.63) at 353.15 K and 100 kPa SRK EoS with conventional mixing rules
and all interaction parameters equal to
zero.

[8,26]

(1) Propene X1 = (x1 + x3)/(1 + x3),
X2 = (x2 + x3)/(1 + x3) = 1 − X1

Keq = 23

(2) Water Reference component: A3 Model parameters are taken from
Bonilla-Petriciolet et al. [26].

(3) 2-Propanol
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Table 4
Global minimum of selected reactive and non-reactive examples.

No. Non-reactive Reactive

TPDF g Equilibrium RTPDF ĝ Equilibrium

1 −0.032466 −0.020198 LLE −0.019019 −1.298000 VLE
2 −0.294540 −0.352957 LLE −0.058350 −1.434267 VLE
3 −0.015767 −0.547791 VLE −0.002058 −1.226367 VLE
4 −0.003932 −0.019892 VLE −0.065562 −0.301730 LLE
5 −0.012650 −0.0048272 VLE −0.001591 −1.853908 VLE
6 −0.000002 −1.183653 VLE −0.113309 −1.798377 VLE
7 −0.002688 −0.838783 VLE −0.020055 −0.144508 LLE
8 −1.486205 −0.769772 VLE −0.042742 −1.043199 VLE
9 −0.000020 −1.121176 VLE −0.024946 −1.347857 VLE

PSO-based methods more explicit, we have employed the per-
formance profile (PP) reported by Dolan and More [48]. PP is an
alternative tool for evaluating and comparing the performance of
several solvers on a set of test problems. The results of PP allow
us to identify the expected performance differences among several
solvers and to compare the quality of their solutions by eliminating
the bias of failures obtained in a small number of problems. We will
give a brief overview of PP, and a detailed description is provided
by Dolan and More [48]. Suppose that, for a set of Nprob problems
(in our case, the collection of phase equilibrium problems reported
in Tables 2 and 3) and a set of S solvers (in our case, PSO and its
variants tested), we obtain a performance metric tij ≥ 0 for every
solver i ∈ S and problem j ∈ Nprob. This performance metric should
give information on solver reliability, efficiency or another perfor-
mance measure useful to characterize the capabilities of the solver
under evaluation. For each problem j ∈ Nprob, we calculate:

t∗
j = min{tij|solver i ∈ S} (30)

which indicates the best possible performance for problem j among
all the solvers tested. For a particular solver i, the set of performance
ratios 	ij is determined by:

	ij = tij

t∗
j

j ∈ Nprob (31)

The performance ratio 	ij of method i for problem j is simply the
ratio of the method’s performance to the best performance value
over all solvers for the same problem. The value of 	ij is 1 for the
solver i that performs best on a specific problem j. For every solver
i ∈ S, let 
i(�) be the fraction of problems for which 	ij ≤ � where
� ≥ 1. Specifically, we have:


i(�) = 1
Nprob

size{j ∈ Nprob : 	ij ≤ �} (32)

Table 5
Suggested values of parameters in PSO and its variants for phase stability and equi-
librium calculations in multicomponent reactive and non-reactive mixtures.

PSO method Parameter Tested values Suggested values

PSO-C c1 2.0, 2.5, 2.8, 3.0, 3.5 3.0
c2 0.5, 1.0, 1.3, 1.5, 2.0 1.0

PSO-D c1,0 2.0, 2.5, 2.8, 3.5, 3.0 3.0
l 4.0, 4.1 4.0

PSO-I c1 2.0, 2.5, 2.8, 3.0, 3.5 3.5
c2 0.5, 1.0, 1.3, 1.5, 2.0 0.5
w 0.6, 0.8 0.6

PSO-DI c1 2.0, 2.5, 2.8, 3.0, 3.5 3.5
c2 0.5, 1.0, 1.3, 1.5, 2.0 0.5
w0 0.6, 0.8 0.6

PSO-CF c1 2.8, 3.0, 3.5 3.5
l 4.1, 4.5, 5.0 5.0

where the “size” is the number of problems such that the perfor-
mance ratio 	ij is less than or equal to � for solver j. The parameter

i(�) indicates the fraction of problems for which solver i is within
a factor of � of the best solver (according to the performance metric
chosen for solver comparison). Thus, the performance profile of a
solver represents the cumulative distribution function of its perfor-
mance ratios and is a plot of 
i(�) versus �. Note that 
i(1) indicates
the probability (i.e., fraction of problems tested) for which solver i
was the best solver overall. To identify the best solver using PP, it
is only necessary to compare the values of 
i(1) for all solvers and
to select the highest one.

Our study compares how well the PSO-based methods can esti-
mate the global optimum relative to one another in phase stability
and equilibrium calculations. So, we have used the following per-
formance metric for a systematic assessment of PSO reliability:

tij = f̂ calc
ij − f ∗

j (33)

where f ∗
j

is the known global optimum of the objective function for

problem j and f̂ calc
ij

is the mean value of the objective function cal-
culated by the stochastic method i over 100 runs performed with
random initial values for problem j. This performance metric is use-
ful to identify the algorithm that provides the most accurate value
of the global minimum in phase equilibrium problems and we con-
sider that it is suitable for comparison of PSO-based methods. In
this study, performance profiles are calculated at different levels of
efficiency, which are obtained by varying the stopping conditions
Itermax and Scmax, to investigate the behavior of PSO algorithms.

First we assess the effect of stopping criterion Itermax on perfor-
mance of PSO-based methods. To directly compare the reliability
of PSO and its variants, we keep the number of function evalua-
tions (NFEstoc) constant using Itermax alone as stopping condition
and evaluate the quality of the results obtained. Note that fair algo-
rithm comparisons can only occur if all solvers have a uniform
stopping condition. Fig. 2a shows the results of 
i(1) versus Itermax

for PSO and its variants in phase stability and equilibrium calcula-
tions of both reactive and non-reactive systems using Eq. (33) as
performance metric. Our results indicate that PSO-C offers the best
performance and shows the highest probability for finding the best
solutions in the collection of phase equilibrium problems used in
the present study. It is clear from Fig. 2a that the probability 
i(1)
of PSO-C increases as Itermax increases. In fact, PSO-C dominates the
other PSO variants and is the best method throughout the range of
Itermax tested. On the other hand, PSO-CF appears to be the second
best algorithm for this stopping criterion especially at early iter-
ations. But, its probability 
i(1) decreases when Itermax increases.
Overall, results of PP indicate that the best solutions found by PSO-
D, PSO-I and PSO-DI are worse than the best solution found by
PSO-C and PSO-CF in the global optimization of TPDF, RTPDF, g
and ĝ.

The results of PP using Scmax alone as stopping condition are
reported in Fig. 2b. At low values of Scmax, PSO-CF has the high-
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Fig. 2. Results of performance profiles for the comparison of PSO and its variants
in phase stability and equilibrium calculations of reactive and non-reactive mix-
tures. Performance metric: tij = f̂ calc

ij
− f ∗

j
. Stopping condition of PSO: (a) a maximum

number of iterations and (b) a maximum number of successive iterations without
improvement in the best function value. Note that missing bars indicate that the
probability 
i(1) for solver i is 0.0.

est probability 
i(1) for finding the best solution in reactive and
non-reactive phase stability and equilibrium problems. However,
PSO-CF is overtaken by PSO-C and PSO-D at higher values of Scmax.
Once more, PSO-I and PSO-DI show the worst performance for find-
ing the global optimum in phase equilibrium problems. It appears
that the use of inertia parameter w (with constant and dynamic val-
ues) does not significantly improve the reliability of PSO for solving
phase stability and equilibrium problems with or without chem-
ical equilibrium. In addition, the linear decrease in inertia term
appears to be more competitive than a constant inertia term for
solving these thermodynamic problems. Our observations are in
agreement with results reported in the literature for benchmark
problems [34,35], which indicates that the constriction approach
seems superior to the introduction of inertia term. However, our
results suggest that this trend depends on the stopping condition
used for the PSO algorithm in phase equilibrium problems.

To compare algorithm efficiency, we used NFEstoc as perfor-
mance metric (i.e., tij = NFEstoc) and the results of PP are given in
Fig. 3 employing Scmax alone as stopping condition. Even though
PSO-I and PSO-DI showed the worst performance in terms of locat-
ing the global optimum, these methods are more efficient than
PSO-C and PSO-D. Note that PSO-CF is also more competitive than
PSO-C and PSO-D from the standpoint of numerical effort require-
ments. The percentage reduction in NFEstoc of PSO-DI and PSO-I
compared to PSO-C is around 0.4–29.6 and 0.8–29.2%, respectively.

Fig. 3. Results of performance profiles for the comparison of PSO and its variants in
phase stability and equilibrium calculations of reactive and non-reactive mixtures.
Performance metric tij = NFEstoc and Scmax as stopping condition of PSO algorithms.
Note that missing bars indicate that the probability 
i(1) for solver i is 0.0.

As indicated by Ali and Kaelo [35], the usual variants to the origi-
nal PSO have been proposed to make it faster. Unfortunately, these
variants improve the convergence rate of PSO but compromise reli-
ability in reactive and non-reactive phase stability and equilibrium
calculations.

In conclusion, the order of reliability of the PSO algorithms in
finding the global minimum for phase equilibrium problems is PSO-
C > PSO-CF > PSO-D > PSO-DI ∼= PSO-I using either Itermax or Scmax as
stopping condition. Among the PSO variants tested in this study,
PSO-C is the best from the standpoint of algorithm reliability and
its selection is therefore clearly justified for solving phase stability
and equilibrium problems in reactive and non-reactive systems.

4.4. Numerical study of the best PSO algorithm in combination
with a local optimization method

After selecting the best PSO algorithm, we now perform a com-
parative study using PSO in combination with a local optimization
technique for finding the global minimum accurately and effi-
ciently. Specifically, the point identified by the best PSO algorithm
is used as initial guess for a local optimization technique. Note that
stochastic optimization methods may require a significant compu-
tational effort to improve the accuracy of global solution because
they explore the search space of decision variables by creating
random movements instead of determining a logical optimiza-
tion trajectory. This convergence behavior is illustrated in Fig. 4
for some reactive and non-reactive phase equilibrium problems.
Therefore, the intensification step is needed for rapid convergence
and for improving the accuracy of final solutions once the parti-
cles of PSO are clustered around the global optimum especially in
multicomponent systems. For local optimization, we have applied
and compared two strategies, namely: (a) a quasi-Newton (QN)
method implemented in the subroutine DBCONF from IMSL library
and (b) a Nelder–Mead (NM) simplex method implemented in the
subroutine DBCPOL from IMSL library. The former is an efficient
gradient-based method that calculates the gradient via finite differ-
ences and approximates the Hessian matrix according to the BFGS
formula, whereas the latter is a direct search method not requir-
ing derivatives. The default values of both DBCONF and DCPOL
parameters in the IMSL library were used in our calculations. The
performance of the best PSO with local optimization is studied
from the standpoints of reliability and efficiency. All algorithms
were run 100 times, with random initial values for decision vari-
ables and random number seed, on each of the test problems to
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Fig. 4. Convergence histories of the norm |f ∗ − f cal | of PSO-C in the global minimiza-
tion of TPDF, RTPDF, g and ĝ for selected reactive and non-reactive examples.

determine the success rate (SR, measured in terms of number of
times the algorithm located the global minimum out of 100 trials
and reported as percentage) and computational efficiency (mea-
sured in terms of average number of function evaluations NFE and
CPU time). The average NFE and CPU time were calculated using
successful trials only. A trial is considered successful if the global
optimum is obtained with an absolute error of 10−5 or lower in the
objective function value, i.e. |f ∗ − f cal| ≤ 10−5. One exception is the
non-reactive example no. 5 where an absolute error of 10−7 in the
objective function g was used to avoid counting local minima as
the global optimum. NFE includes both the function calls for evalu-
ating the objective function using the stochastic method (NFEstoc)
and the function calls for the local optimization (NFEloc).

The performance of PSO-C implemented with DBCONF and
DCPOL subroutines is given in Fig. 5 and Tables 6 and 7. The PSO
methods consisting of PSO-C followed by QN or NM are denoted as
PSO-CQN and PSO-CNM, respectively. For the sake of brevity, algo-
rithm reliability results are summarized through the global success
rate (GSR, %). Specifically, GSR is defined as the total number of suc-
cesses out of all calculations performed on the collection of phase
equilibrium problems tested:

GSR =
nb∑
i=1

SRi

Nprob
(34)

where SRi is the success rate in the problem i. Overall, the GSR
of PSO-CNM is slightly higher than that obtained for PSO-CQN
using Itermax and Scmax. As expected, the GSR of both PSO-CNM
and PSO-CQN improves as Itermax or Scmax increases (see Fig. 5).
Our results show that there is an improvement in the reliabil-
ity of both PSO-CQN and PSO-CNM using Itermax compared to
that of Scmax. This could be because PSO algorithms require sev-

Fig. 5. Global success rate of PSO-CQN and PSO-CNM in phase stability and equi-
librium calculations of reactive and non-reactive systems using: (a) Itermax and (b)
Scmax as stopping conditions.

eral iterations to improve objective function values after getting
stuck at some local optima especially in challenging optimization
problems. It is important to note that PSO-CNM offers better perfor-
mance in reactive phase equilibrium problems than PSO-CNQ. This
could be because the objective functions RTPDF and ĝ appear to be
flat near the global solution, affecting the numerical behavior of
gradient-based methods. In general, the SR of PSO-CNM is around
100% in the global optimization of TPDF for examples 1–4 and 8
whereas the global optimum of RTDPF is found with a high SR in
all reactive examples if proper values of Itermax and Scmax are used.
PSO-CNM failed several times to find the global optimum of TPDF
in non-reactive example nos. 5–7 and 9. In particular, non-reactive
example no. 5 is very challenging and useful for testing new global
optimization strategies due to the presence of comparable minima
[16]. With respect to phase split calculations, PSO-CNM is also very
reliable in the global optimization of g for all non-reactive exam-
ples with the exception of example no. 5, where performance is
very poor (i.e., 0% SR). For the case of ĝ, the reliability of PSO-CNM is
close to 100% SR for reactive example nos. 2, 4–8, while this method
showed failures in the global optimization of reactive example nos.
1, 3 and 9. On the other hand, PSO-CQN requires a slightly lower
NFE than PSO-CNM using Itermax and Scmax (see results reported in
Tables 6 and 7). The CPU time ranged from 0.01 to 5.88 s for non-
reactive examples and from 0.16 to 101.1 s in reactive examples
in all calculations performed using PSO-CNM. Note that the CPU
time in reactive systems is higher due to the variable transforma-
tion procedure X → x involved in the calculation of thermodynamic
properties especially when EoS models and high values of Itermax

(>1000) are used.
Finally, the performance of PSO-CNM is compared with results

reported by Rahman et al. [42] for repulsive particle swarm opti-
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Table 6
NFE of PSO-CNM and PSO-CQN in phase stability and equilibrium calculations in selected non-reactive examples.

Example f nvar Method NFE fora

Itermax Scmax

50 100 250 500 750 1000 1500 10 25 50

1 TPDF 2 PSO-CQN 1029 2,026 5,023 10,019 15,019 20,018 30,018 481 1027 1,958
PSO-CNM 1057 2,055 5,052 10,050 15,049 20,048 30,047 536 1030 1,905

g PSO-CQN 1051 2,048 5,045 10,040 15,038 20,037 30,036 553 1248 2,313
PSO-CNM 1074 2,073 5,071 10,071 15,070 20,069 30,068 623 1259 2,354

6 TPDF 5 PSO-CQN 2718 5,219 12,722 25,223 37,722 50,220 75,223 1,915 3013 5,506
PSO-CNM 2769 5,281 12,769 25,264 37,758 50,266 75,271 1,830 2972 5,349

g PSO-CQN 2677 5,169 12,666 25,162 37,661 50,162 75,159 1,477 2680 4,680
PSO-CNM 2788 5,293 12,787 25,283 37,783 50,285 75,284 1,896 2790 4,850

7 TPDF 8 PSO-CQN 4652 8,766 20,748 40,771 60,762 80,763 120,757 4,216 5806 9,387
PSO-CNM 4573 8,707 20,692 40,724 60,735 80,712 120,678 3,752 5653 9,366

g PSO-CQN 4728 8,718 20,713 40,711 60,712 80,706 120,700 2,411 4371 7,852
PSO-CNM 4413 9,114 21,201 41,226 61,186 81,169 121,161 2,559 5932 9,807

9 TPDF 10 PSO-CQN 5861 10,925 25,959 51,008 76,019 101,044 151,072 5,877 7340 11,420
PSO-CNM 5752 10,858 25,908 50,969 75,929 100,922 150,968 4,105 7360 12,024

g PSO-CQN 5858 11,034 26,030 51,028 76,030 101,036 151,029 NC 7121 10,213
PSO-CNM 5871 11,124 26,190 51,258 76,298 101,317 151,330 NC 7226 10,237

a NC indicates that NFE is not reported because PSO algorithm showed a 0% success rate.

Table 7
NFE of PSO-CNM and PSO-CQN in phase stability and equilibrium calculations in selected reactive examples.

Example f nvar Method NFE for

Itermax Scmax

50 100 250 500 750 1000 1500 10 25 50

5 RTPDF 3 PSO-CQN 1564 3063 7,562 15,062 22,562 30,063 45,063 744 1625 2909
PSO-CNM 1611 3109 7,607 15,106 22,605 30,105 45,104 914 1673 2956

ĝ PSO-CQN 1559 3073 7,586 15,089 22,585 30,083 45,080 681 1471 2928
PSO-CNM 1648 3164 7,671 15,174 22,670 30,169 45,165 1008 1558 3017

6 RTPDF 7 PSO-CQN 3861 7471 17,987 35,542 52,970 70,473 105,546 2162 3761 6834
PSO-CNM 4020 7518 18,015 35,508 53,005 70,504 105,501 3436 4330 6900

ĝ PSO-CQN 3849 7414 17,881 35,372 52,832 70,336 105,353 1915 3726 6686
PSO-CNM 4091 7623 18,127 35,619 53,123 70,620 105,623 3518 4639 6893

7 RTPDF 2 PSO-CQN 1053 2051 5,047 10,047 15,046 20,047 30,047 492 1011 1930
PSO-CNM 1061 2059 5,057 10,056 15,056 20,057 30,057 537 1020 1938

ĝ PSO-CQN 1070 2070 5,068 10,066 15,064 20,067 30,066 600 1141 2121
PSO-CNM 1074 2074 5,072 10,071 15,070 20,070 30,069 648 1140 2124

mization (RPSO). Rahman et al. [42] studied the performance of
RPSO for solving the phase stability and equilibrium problem in
the binary system n-butyl acetate and water (example no. 1 from
Table 3 of this paper). The stability test of this mixture was suc-
cessfully performed and RPSO required 25,025 NFE to converge,
whereas 7150 NFE were required by RPSO for determining the
phase equilibrium compositions. Our results indicate that PSO-
CNM can find the global optimum of both TPDF and g with a 100%
SR but using a lower NFE than RPSO. Specifically, the NFE of PSO-
CNM required to complete the stability test is only 1057 and the
phase equilibrium compositions are obtained after 2073 NFE. These
results suggest that PSO-CNM is robust and appears to be more
efficient than RPSO.

5. Conclusions

This paper reports on a comparative study of particle swarm
optimization and several of its variants for performing phase stabil-
ity and equilibrium calculations in both reactive and non-reactive
systems. We have shown and compared the effect that the stop-
ping condition has on the reliability and efficiency of PSO-based
methods for solving phase equilibrium problems. Overall, clas-
sical particle swarm optimization with constant cognitive and

social parameters offers the best performance from the standpoint
of algorithm reliability, whereas the classical variants of particle
swarm optimization are effective but not reliable methods to per-
form the global optimization of TPDF, RTPDF, g and ĝ. The results
clearly demonstrate that the incorporation of constriction factor or
inertia term in the velocity update rule does not provide a signifi-
cant improvement in PSO performance in terms of the reliability for
finding the global optimum. Furthermore, the Nelder–Mead sim-
plex method is more robust than a quasi-Newton method for the
intensification step of PSO especially for reactive phase equilibrium
calculations. In summary, our results indicate that PSO-CNM is a
suitable alternative method for reliably performing phase stability
and equilibrium calculations in reactive and non-reactive systems.
Further research is underway for development of an efficient and
robust hybrid PSO algorithm using other metaheuristics such as
simulated annealing or differential evolution.

List of symbols
ai activity of component i
c number of components
c1 cognitive parameter in PSO
c2 social parameter in PSO
f objective function value
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g molar Gibbs free energy of mixing
ĝ transformed molar Gibbs free energy of mixing
G Gibbs free energy function
Itermax maximum number of iterations for PSO
k iteration counter
Keq reaction equilibrium constant
n mole number
n̂ transformed mole number
nh neighborhood size in PSO
np swarm size in PSO
nvar number of optimization variables
N invertible matrix of stoichiometric coefficients of refer-

ence components
Nprob overall number of tested problems
NFE number of function evaluations
P pressure
r number of independent chemical reactions
Rg universal gas constant
R1, R2 random numbers
RTPDF reactive tangent plane distance function
s position of particles in PSO
Scmax maximum number of successive iterations without

improvement in the best function value
SR success rate of stochastic method
tij performance metric of stochastic method
T temperature
TPDF tangent plane distance function
u vector of decision variables
vi stoichiometric coefficient of component i
V velocity of particle in PSO
w inertia term in PSO
x, y mole fraction of trial phase
X, Y transformed mole fraction of trial phase
z feed mole fraction
Z transformed feed mole fraction
ˇi decision variable for phase stability and equilibrium cal-

culations
	 performance ratio

 probability of performance profiles
� constriction factor in PSO
�i chemical potential of component i
ϕ̂i fugacity coefficient of component i in the mixture
ϕi fugacity coefficient of pure component i
� i activity coefficient of component i in the mixture
� phase number

Acknowledgement

The authors acknowledge the financial support of CONACYT,
Instituto Tecnológico de Aguascalientes and Universidad de Gua-
najuato.

References

[1] M. Srinivas, G.P. Rangaiah, Comp. Chem. Eng. 30 (2006) 1400–1415.
[2] J.W. Gibbs, Trans. Conn. Acad. Arts Sci. II (1873) 382–404.
[3] L.E. Baker, A.C. Pierce, K.D. Luks, Soc. Petrol. Eng. J. 22 (1982) 731–742.
[4] M.L. Michelsen, Fluid Phase Equilib. 9 (1982) 1–20.
[5] Y.S. Teh, G.P. Rangaiah, Chem. Eng. Res. Des. 80 (2002) 745–759.
[6] W.D. Seider, S. Widagdo, Fluid Phase Equilib. 123 (1996) 283–303.
[7] W.A. Wakeman, R.P. Stateva, Rev. Chem. Eng. 20 (2004) 1–56.
[8] R.P. Stateva, W.A. Wakeham, Ind. Eng. Chem. Res. 36 (1997) 5474–5482.
[9] A.C. Sun, W.D. Seider, Fluid Phase Equilib. 103 (1995) 213–249.

[10] S.K. Wasylkiewicz, L.N. Sridhar, M.F. Doherty, M.F. Malone, Ind. Eng. Chem. Res.
35 (1996) 1395–1408.

[11] F. Jalali, J.D. Seader, Comp. Chem. Eng. 23 (1999) 1319–1331.
[12] S.K. Wasylkiewicz, S. Ung, Fluid Phase Equilib. 175 (2000) 253–272.
[13] F. Jalali, J.D. Seader, S. Khaleghi, Comp. Chem. Eng. 32 (2008) 2333–2345.
[14] C.M. McDonald, C.A. Floudas, AIChE J. 41 (1995) 1798–1814.
[15] C.M. McDonald, C.A. Floudas, Comp. Chem. Eng. 21 (1997) 1–23.
[16] S.T. Harding, C.A. Floudas, AIChE J. 46 (2000) 1422–1440.
[17] J.Z. Hua, J.F. Brennecke, M.A. Stadtherr, Fluid Phase Equilib. 116 (1996) 52–59.
[18] S.R. Tessier, J.F. Brennecke, M.A. Stadtherr, Chem. Eng. Sci. 55 (2000)

1785–1796.
[19] G.I. Burgos-Solorzano, J.F. Brennecke, M.A. Stadtherr, Fluid Phase Equilib. 219

(2004) 245–255.
[20] D.V. Nichita, S. Gomez, E. Luna, Comp. Chem. Eng. 26 (2002) 1703–1724.
[21] J. Balogh, T. Csendes, R.P. Stateva, Fluid Phase Equilib. 212 (2003) 257–267.
[22] Y.P. Lee, G.P. Rangaiah, R. Luus, Comp. Chem. Eng. 23 (1999) 1183–1191.
[23] Y. Zhu, H. Wen, Z. Xu, Chem. Eng. Sci. 55 (2000) 3451–3459.
[24] G.P. Rangaiah, Fluid Phase Equilib. 187–188 (2001) 83–109.
[25] A. Bonilla-Petriciolet, R. Vazquez-Roman, G.A. Iglesias-Silva, K.R. Hall, Ind. Eng.

Chem. Res. 45 (2006) 4764–4772.
[26] A. Bonilla-Petriciolet, U.I. Bravo-Sanchez, F. Castillo-Borja, S. Frausto-

Hernandez, J.G. Segovia-Hernandez, Chem. Biochem. Eng. Q 22 (2008) 285–298.
[27] G. Nagatani, J. Ferrari, L. Cardozo Filho, C.C.R.S. Rossi, R. Guirardello, J. Vladimir

Oliveira, M.L. Corazza, Braz. J. Chem. Eng. 25 (2008) 571–583.
[28] Y.S. Teh, G.P. Rangaiah, Comp. Chem. Eng. 27 (2003) 1665–1679.
[29] M. Srinivas, G.P. Rangaiah, Comp. Chem. Eng. 31 (2007) 760–772.
[30] A. Bonilla-Petriciolet, G.P. Rangaiah, J.G. Segovia-Hernandez, J.E. Jaime Leal, in:

G.P. Rangaiah (Ed.), Stochastic Global Optimization: Techniques and Applica-
tions in Chemical Engineering, World Scientific Inc., in press.

[31] D.V. Nichita, S. Gomez, E. Luna, Fluid Phase Equilib. 194–197 (2002) 411–437.
[32] M. Srinivas, G.P. Rangaiah, Ind. Eng. Chem. Res. 46 (2007) 3410–3421.
[33] J. Kennedy, R.C. Eberhart, Proceedings of the IEEE International Conference on

Neural Networks, 2005, pp. 1942–1948.
[34] J.F. Schutte, A.A. Groenwold, J. Global Optim. 31 (2005) 93–108.
[35] M.M. Ali, P. Kaelo, Appl. Math. Comput. 196 (2008) 578–593.
[36] M. Schwaab, E.C. Biscala Jr., J.L. Monteiro, J.C. Pinto, Chem. Eng. Sci. 63 (2008)

1542–1552.
[37] L. Yiqing, Y. Xigang, L. Yongjian, Comp. Chem. Eng. 31 (2007) 153–162.
[38] F. Herrera, J. Zhang, Comp. Chem. Eng. 33 (2004) 1593–1601.
[39] J.C. Ferrari, G. Nagatani, F.C. Corazza, J.V. Oliveira, M.L. Corazza, Fluid Phase

Equilib. 280 (2009) 110–119.
[40] B. Cheng, Q. Zheng, D. Chen, Y. He, J. Chem. Ind. Eng. (China) 58 (2007)

2957–2963.
[41] B. Cheng, D.Z. Chen, J. Chem. Eng. Chin. Univ. 22 (2008) 320–324.
[42] I. Rahman, A.K. Das, R.B. Mankar, B.D. Kulkarni, Fluid Phase Equilib. 282 (2009)

65–67.
[43] A. Bonilla-Petriciolet, J.G. Segovia-Hernández, Comput. Aided Chem. Eng. 26

(2009) 635–640.
[44] Y. Shi, R.C. Eberhart, Lect. Notes Comp. Sci. 1447 (1998) 591–600.
[45] M. Clerc, J. Kennedy, IEEE Trans. Evol. Comput. 6 (2002) 58–73.
[46] S. Ung, M.F. Doherty, Chem. Eng. Sci. 50 (1995) 3201–3216.
[47] S. Ung, M.F. Doherty, Chem. Eng. Sci. 50 (1995) 23–48.
[48] E.D. Dolan, J.J. More, Math. Program. Ser. A 91 (2002) 201–213.
[49] A. Bonilla-Petriciolet, G.A. Iglesias-Silva, K.R. Hall, Fluid Phase Equilib. 269

(2008) 48–55.
[50] W.L. Luyben, Ind. Eng. Chem. Res. 44 (2005) 5715–5725.


